Electrolytes or essential ions should always be in the state of homoeostasis. The Normal or standard range of electrolytes reflects the normal functional status of our kidneys. Our kidneys play a vital role in preserving the internal environment while excreting the waste products of metabolism, extra water and electrolytes. There is two way selectivity between the cause and effect between the electrolytes (essential ions) and renal disorder (kidney disease). Depletion of Sodium (Na+) or Potassium (K+) or Calcium (Ca++) through excessive urinary excretion may cause renal failure or renal failure may lead to depletion of these ions or electrolytes in the blood plasma.
The renal tubules play a vital role in regulation and preservation of water and electrolytes. The function of tubular epithelium and tubular enzymes is under the control of hormones of some endocrine glands. Suboptimal response of tubular enzymes or over production of corresponding hormone may cause renal disorder (kidney disease). Anti-diuretic hormone of pituitary gland, aldosterone and parathyroid hormone affect the renal tubules to regulate and preserve the water and electrolytes. Potassium (K+) content of the cells plays a critical role in retention or excretion of potassium. The glomeruli of our kidneys excrete Potassium (K+) in glomerular filtrate and tubular epithelial cells also excrete Potassium (K+) by ion exchange in which Potassium (K+) of tubular cells is exchanged by Sodium (Na+) of glomerular filtrate. Re-absorption is controlled by proximal tubules whereas the excretion is controlled by distal tubules.
Low dietary intake, fever, trauma, or hemolysis leads to tissue catabolism in patients with anuria (no urine output) leading to release of more Potassium (K+) from the cells. In these patients Potassium (K+) concentration in blood may reach lethal level (more than 100 mEq/litre). Normal level of Potassium (K+) in serum is 5.5 mEq/litre. The clinical features of hyperkalemia (high level of Potassium in blood) could be mainly cardiac (bradycardia or arrhythmia) with significant changes in electrocardiogram (ECG). Potassium (K+) depletion may be renal or non-renal in origin and may be suspected when pronounced muscular weakness and lethargy is associated with electrolyte imbalance. Commonest cause of Potassium (K+) deficiency could be the uncontrolled use of diuretics for the treatment of congestive heart failure. Potassium (K+) deficiency leads to vacuolation of tubular epithelium in proximal tubules (known as clear cell nephropathy). The associated renal changes are reversible with correction in Potassium (K+) level in blood/serum. Aldosterone is Sodium (Na+) retaining adrenal corticoid secreted by adrenal cortex. Excessive secretion of this corticoid as in cases of adenoma of adrenal cortex may lead to increase in the level of Sodium (Na+) and extracellular fluid volume and altered function of Sodium pump. In usual Potassium (K+) losing nephropathies there is failure of hydrogen ion excretion in association with the failure of retention or conservation of Potassium (K+).
Hypercalcemia (high level of Calcium in blood) as seen in primary hyperparathyroidism, sarcoidosis, excessive vitamin D intake or idiopathic hypercalcemia of infants, may also result in renal damage. Hypercalcemia is also a feature of acute osteoporosis of multiple myeloma and matastatic carcinomatosis of bone. Hypercalcemia could be a lethal complication associated with sarcoidosis but may successfully be reversed with timely steroid therapy. The serum level of Calcium (Ca++) may return to normal in a few weeks but the reversal of renal insufficiency may take a year or longer. Calcium (Ca++) is retained in our body in the form of Calcium phosphate. The hormone like action of vitamin D during excessive intake, causes increased excretion of phosphorus in urine, unsaturation of serum Calcium phosphate, demineralization of bone leading to increased level of Calcium in blood and increased loss of Calcium in urine. Hypercalcemia could cause nephrocalcinosis leading to renal insufficiency.
No comments:
Post a Comment